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Abstract

The new DLR FlexibleBodies library enables and sup-
ports the object-oriented and mathematically efficient
modelling of flexible bodies as components of multi-
body and of arbitrary physical systems. It provides
Modelica model classes to model (a) beams and (b)
general flexible bodies exported from finite element
programs. The motion of a flexible structure is de-
fined by superposition of a in general large, non-linear
motion of a reference frame with small elastic defor-
mations. This paper gives an overview on the back-
ground, concepts and ideas on which the library is
based and how the Modelica user may take advantage
of it.

Keywords: Flexible body, modal representation,
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1 Introduction

The DLR FlexibleBodies library is based on the ”Stan-
dard Input Data of flexible bodies* (SID) which is an
object-oriented data structure that was developed at the
DLR-Institute of Robotics and Mechatronics to gener-
ally describe the properties of elastic bodies, see [13].
It facilitates the use of data which may originate from
a finite element description or from continuum mod-
els and has been used by various multibody codes, es-
pecially by SIMPACK [10], in industrial applications
since the early 1990’s. The implementation of this
general, stable and well-established approach offers
new possibilities for multiphysical modelling tasks in
Modelica and is nevertheless open for further devel-
opment and improvements, e.g. concerning multifield
problems [6].

2 Modelling Capabilities

The DLR FlexibleBodies library is a commercial
Modelica package. It provides two basic Modelica
model classes: the Beam model and a general Modal-
Body model, see Figure 1.

beam modalBody
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Figure 1: Icons of Beam and ModalBody models.

If a Beam object is instantiated, a dialogue menu,
see Fig. 2, supports the definition of the geometrical
and physical properties of a straight, homogenous and
isotropic beam. For the specification of the cross sec-
tion an additional menu offers predefined cross section
profiles such as tubes, U-pipes or T-beams, see Fig. 3.
The parameters defined there are also used for anima-
tion purposes. The choice general in Fig. 3 enables
the direct input of the mechanical essentials, i.e. the
geometrical moments of inertia of the cross section.

Parameters

crossSection =ctangle 'IE>

| ' | rm

rho ' » kg/m3
E ' » Nim*2
G ' (2 » Nim*2
xsi [ 5

Figure 2: Cutout of the user interface to specify pa-
rameters of the Beam model.
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Figure 3: Input for predefined cross section profiles of
the Beam model.

The beam model takes bending in two planes,
lengthening and torsional deflections into account.
The deformations are discretised by eigenforms, i.e.
the analytical solutions of the eigenvalue problem of
the Euler-Bernoulli beam, see Sec. 3.

Only those eigenforms and eigenfrequencies re-
spectively that are specified by their ordinal numbers
are considered in the model. In Fig. 4 the first, third
and fifth eigenmode are selected, whereas a damp-
ing coefficient of 0.02 is assigned to the first, 0.03 to
the second and 0.01 to the third eigenfrequency. This
feature gives the experienced modeller the possibility
to reduce the number of degrees of freedoms, since
some eigenmodes might not contribute to the mod-
elling problem.

Additionally, appropriate boundary conditions
that constrain the deformation field of the beam with
respect to its floating frame of reference have to be de-
fined. As a general rule, the boundary condition should
correspond to the joint where the beam is attached to.

If a ModalBody is instantiated, a file name has to
be specified by the user in which the SID structure is
present. This SID-file has to be generated in a prepro-
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Figure 4: Menu to specify modes of the beam model.

cessing step from finite element data of the body. We
recommend the preprocessor FEMBS, see Sec. 4 and
[5], from the DLR spin-off company INTEC GmbH
that is capable to prepare data from the FE-programs
ABAQUS, ANSYS, MSC.Nastran, NX Nastran, I-

DEAS, PERMAS.
For both the Beam and the ModalBody
model the frame connectors of the Model-

ica.Mechanics.MultiBody library are used to define
the connection of the flexible body instance to other
system components such as joints, force or sensor
elements. Besides the two frames at both ends an ar-
bitrary number of intermediate frames may be defined
as parameters of the Beam model. E.g. the parameter
xsi={0.5} in Figure 2 specifies an additional frame at
the center of the beam. The ModalBody model has
one vector of frame connectors that are associated
with nodes of the finite element model.

3 Mechanical Background

The mechanical description is based on the floating
frame of reference approach, i.e. the absolute posi-
tion r = r(c,t) of a specific body particle is subdivided
into three parts: the position vector rg = rg(t) to the
body’s reference frame, the initial position of the body
particle within the body’s reference frame, i.e. the La-
grange coordinate ¢ # ¢(t), and the elastic displace-
ment u(c,1):

(1

where all terms are resolved w.r.t. the body’s floating
frame of reference (R). That’s why the angular ve-
locity of the reference frame @y have to be taken in
account when the kinematic quantities velocity v and
acceleration a of a particle are derived:

r=rr+c+u,

2)
3)

V=@gr+ir=vp+®(c+u)tu,
a :aR+(6)R+6)R6)R) (cHu)+2@gu—+ii,

Figure 5: Vector chain of the floating frame of refer-
ence.
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where the ( )-operator is used to replace the vector
cross product using the appropriate skew-symmetric
matrix instead so that e.g. the identity @ x ¢ = @ ¢
holds.

The decomposition in (1) makes it possible to su-
perimpose a large non-linear overall motion of the ref-
erence frame with small elastic deformations.

The displacement field is approximated by a sec-
ond order Taylor expansion with space-dependent
mode shapes ®(c) € R¥" ®,(c),®,(c),®,(c) € R"™"
and time-dependent modal amplitudes g(z) € R" [13]:
q'®,

1

u:¢q+§ 4

The focus of the second order expansion is not to de-
pict large deformations e.g. for crash analysis but the
incorporation of stress stiffening and softening effects,
e.g. the weak bending behaviour of a slender beam un-
der the influence of a large axial thrust force, see Sec.
6.2.

The kinematic quantities together with the vector
of applied forces f,. are inserted into Jourdain’s prin-
ciple of virtual power:

Sv! /(dfe—a dm)=0. 6))

body

Subsequently, the equations of motion of an un-
constrained flexible body are formulated neglecting
deflection terms of higher than first order [13, (38)]:

mI3 synt. ar
chlCM J G)R =
¢ C M. q
_ 0
=h, — 0 +h,, (6)
| K.q+D.q

where the following quantities and symbols appear:

m body mass

Iz 3 x 3 identity matrix
dcy(q) position of center of mass
J(q) inertia tensor

C:(q) inertia coupling matrix
C.(q) inertia coupling matrix
hy(®,q,9) gyroscopic and centripetal forces
h, external forces

M, structural mass matrix

K. structural stiffness matrix
D, structural damping matrix

If, for the sake of demonstration, the body is as-
sumed to be rigid, those rows and columns in (6)
vanish that are associated with the generalised elas-
tic acceleration g. Since (6) is formulated in terms of
the translatory and angular acceleration of the floating
frame of reference, such reduction leads to the classi-
cal Newton-Euler equations of a rigid body. There-
fore, SHABANA calls (6) the generalised Newton-
Euler equations of an unconstrained deformable body
in [11, Sec. 5.5].

On the other hand, if the motion of the reference
frame is constrained to be zero, (6) is reduced to the
classical structural equation (see Sec. 6.2 and (12) for
the definition of f,):

Meq+Deq+Keq:fq- (N

Applying the classical deformation assumptions of
RAYLEIGH and BERNOULLLI, it is possible to describe
the displacement field of a beam up to second order
terms analytically, see [2, (4.104)]:

1

) (Vlz + le)dx

C=x

X
ow’dxdx+ [u'Vdx

0

X
v'dxdx+ [u'w'dx
0

-/ ®)
0

/
0

=

O

where u denotes the lengthening deformation, v the
bending deflection in xy-plane, w the bending deflec-
tion in xz-plane and O the torsional deformation of a
point on the beam’s x-axis. The ( )’-operation com-
plies with the partial derivation w.r.t. the x-coordinate.

Eq. (8) may be formulated in the manner of (4), if
a Rayleigh-Ritz approach such as

v=0,gq, ®)

is made not only for v but for all four deformation
types u, v, w and 0. The deformation state of the beam
may then be characterised by ¢ = [q] q” g, g} ]".
The DLR FlexibleBodies library uses the analyt-
ical solutions ®; of the spatial problem to the eigen-
value 71;/ of an Euler-Bernoulli beam with length /:

cosh(T;x) "1 e
| sinh(T;x) &)
0 = cos(T;x) c3 (10)
sin(T; x) e |,

to form a set of spatial shape functions for each of the
deformation coordinates. Hereby, c; to ¢4 represent
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constants associated to specific boundary conditions,
see [12, Ch. V].

To summarise, the Beam model class is based on
an analytical continuum description of beams via (8)
to (10). Contrary, the ModalBody class is supposed
to represent bodies with an arbitrary geometry derived
from a finite element description The FE- model of the
body is transformed and utilised in such a way that (1)
to (6) also hold for the ModalBody class.

We recommend the use of the pre-processor
FEMBS from INTEC GmbH that enables this transfor-
mation of FE-data as a reliable and sophisticated pro-
cess, controlled via its own graphical user interface.

4 FEMBS an Interface between MBS
and FEA-tools

FEMBS the time-tested interface between the multi-
body system code SIMPACK and the most impor-
tant finite element codes can also be used as a pre-
processor for Modelica.

The number of degrees of freedom of multi-body
systems is small, when compared with finite element
models. Therefore, the main task of flexible body in-
tegration is the reduction of the number of degrees of
freedom. Currently, this is to be done in two steps.

First, standard reduction schemes like Guyan re-
duction or Craigh-Bampton reduction are used to ex-
port the model from the finite element code into
FEMBS’s flexible body input file.

Reduction in finite element codes is performed
based upon a user defined set of degrees of freedom
at nodes which are to be retained. When using the
Craigh-Bampton method proper dynamic behaviour of
the reduced finite element model can be guaranteed
within the frequency range of the application. This
additionally requires the specification of a number of
so-called dynamic degrees of freedom. They are the
eigenmodes of the flexible body, whose retained de-
grees of freedom were fixed by constraints.

Once the time consuming reduction has been fin-
ished the finite element model has less than 1500 de-
grees of freedom. This first reduction step is to be
done in order to keep FEMBS’s flexible body input
file small. The contents of the FEMBS input file are:

e The mass and stiffness matrix of the reduced
model.

e the retained nodes

e The eigenmodes which are to be obtained by
a modal analysis of the reduced finite element
model.

e Geometric stiffening matrices which are to be ob-
tained by extra static analyses of the reduced fi-
nite element model. These analyses consider the
pre-stresses which are relevant for the applica-
tion.

e The mesh of finite element model. This data is
taken from the FEA input file that contains the
elements and nodes of the original, non-reduced
model.

Based on this data, the second reduction step [9] in
FEMBS is to be performed by selecting modes for
multi-body simulation. The user is recommended to
select all eigenmodes which correspond to the fre-
quency range which is important for the current ap-
plication.

Additionally the user should calculate so-called
frequency response modes in FEMBS in order to im-
prove the accuracy of the modal representation [3].
Frequency response modes represent local deforma-
tions which may occur near the attachment points of
the flexible body, where it is connected by force el-
ements, constraints and joints with the surrounding
multi-body system.

To generate the frequency response modes (11) in
FEMBS the user selects first the nodes and then the
directions of the forces and moments which may be
transmitted by the force elements or constraints. The
frequency response modes u;

(K — Q’M)u; = p; (11)
are based upon the unit load cases p; for each coupled
degree of freedom i, the mass matrix M the stiffness
matrix K and an excitation frequency € which is set to
the half of the minimum eigenfrequency of interest.

Frequently, only a subset of the frequency re-
sponse modes has significant influence on the flexi-
ble body deformation. The superfluous frequency re-
sponse modes may be detected by their large frequen-
cies, which follow from a modal analysis which is
automatically performed in FEMBS. Thus, FEMBS
can automatically select the important frequency re-
sponse modes based on a cut-off frequency, whose de-
fault value is five times greater than the maximum fre-
quency of interest.

As described, the finite element model with say
millions of degrees of freedom is transformed to a
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Figure 6: The multi-body system model with the flex-
ible chassis

modal representation of typically about fifty to hun-
dred degrees of freedom. This modal representation is
stored in the standard input data file [9] that is input
for SIMPACK and Modelica, respectively.

The static deflection of many different flexible
bodies such as railway and automotive car bodies,
chassis, engine parts, subframes etc. was calculated
in the multibody system code SIMPACK. They were
compared with the results of static analyses performed
in the finite element code based upon the original, non-
reduced model. For the static deflection a difference
less than one percent can be expected between the re-
sults of the finite element model and the multi-body
system. Also the eigenfrequencies of the flexible body
calculated in SIMPACK are very close to the eigenfre-
quencies, which are obtained by corresponding finite
element analyses.

Thus FEMBS provides efficient and accurate in-
put for multi-body system analyses.

Detailed FEM models of a sport utility vehicle’s
chassis and also its front and rear subframes were
integrated into the multi-body system model which
was created using SIMPACK for comfort analyses,
see Figure 6. The chassis consisted of about 2.4 mil-
lions degrees of freedom. All finite element models
were dynamically reduced within NASTRAN. Differ-
ent sets with 30 to 40 modes consisting of eigenmodes
and frequency response modes were used for multi-
body system analyses. CAD files of the finite element
mesh were also generated by FEMBS and used for the
graphical representation.

Fig. 7 shows the good correlation of the model to
measured data in the frequency domain up to 25 Hz.

Seat rail acceleration, RHS
15 ‘ . .

— SIMPACK
—— Test

-

Acceleration (mlsz)
o
o

i I
0 5 10 15 20 25
Frequency (Hz)

Figure 7: Correlation of the model to measured data:
Seat rail acceleration at the right hand side

5 Animation of Modal Bodies

In this section, we describe briefly some visualisation
aspects of the ModalBody. The visualiser object used
in FlexibleBodies library has been designed to meet
the specific requirements of flexible bodies animation
in MBS context. It can be accessed from a Modelica
model via a built-in function provided by the Modelica
modelling and simulation environment Dymola [4].

5.1 Interpolation scenario

Consider a body €. The typical animation scenario for
Q is depicted in Fig. 8. As stated in (1), the numerical
simulation of this modal body provides the position
vector rg and the orientation of the body’s reference
frame as well as the elastic displacements u(c;,7) of
a finite set of nodes ¢; on the body. The set of space
points that can be obtained from this information and
setting u(c,t) = 0 is called simulation points set.

On the other hand, the preprocessor FEMBS pro-
vides a Wavefront file [14] that contains the mesh def-
inition of the FE description in the undeformed state
with respect to the reference frame of the body. This
data is the basis for the flexible body animation. The
set of node points of this description is called anima-
tion points in this section.

The basic interpolation problem is discussed at
hand of the simple rectangular plate shown in Fig. 8.
The animation set consists of the points in the grid.
The simulation points are only the four corners of Q,
that is,

c] = (07070)7 C) = (17070)7
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Cc3 —= (0,1.3,0), Cy = (1,1.3,0)

and we define as deformation field u(c;,t) the follow-
ing
u = (07070)7 u = (0707())7

us = (0,0,0), Uy = (0,0,SinZOTEl‘)

This is the typical scenario for animation of flex-
ible bodies. The discretisation of a flexible body, in
the general case, ends up with a set of nodes such that
the error of the FE discretisation is minimised. Then,
a modal analysis is performed. For some special ge-
ometries, the resulting modes can be deduced in closed
form on ¢, but it is a difficult task in general, [9]. That
is why in general, each mode is defined in discretised
form, i.e. by the related displacements that are given at
the node points only.

With these constraints in mind, the visualiser used
in FlexibleBodies meets the following design criteria

e The solution of the equations of motion results
in the displacements u; at simulation points ¢; for
t > ty. The visualiser has to determine the abso-
lute position of the animation points whereas the
instantaneous positions of the simulation points
and the positions the animation points in the un-
deformed configuration are given.

e The topological information is just provided for
the animation points. That is, the simulation point
set is just a set of non-structured points in % 3.

e The ModalBodyVisualizer uses a special
interpolation technique that results in visually
appealing images under the assumption that the
simulation and animation point sets describe an
elastic deformation field. No general interpola-
tion technique (like polynomial interpolation or
splines) is used. Instead, an approach inspired by
potential theory applied to elasticity is used, [8].

Figure 8: Interpolation problem setup with the rectan-
gle plate

Figure 9: result the

Interpolation
ModalBodyVisualizer

using

5.2 ModalBodyVisualizer in Flexible-
Bodies library

To show how ModalBodyVisualizer works, we
applied it to Q in the setup described before. The re-
sults are depicted in Fig. 9. The body € is originally
defined in the plane xy, The outer most right point (¢4)
is now moved up and down.

The initial position is depicted in the left upper
figure. Then, when the elongation is maximally posi-
tive in the y-axis in the right upper figure. After some
time, the deformation is maximally negative, depicted
in the left lower figure. Finally, and to give some feel-
ing about the animation, we present a frame with 4
past positions.

In this example, 165 nodes are interpolated from
the information in the four corners of the rectangle.
More general interpolation techniques are not so suit-
able for elastic deformation fields. The main reason is
the lack of smoothness and loss of connectivity in the
single body, making artificial cracks, peaks or weird
artifacts to be shown as part of the simulation.

Taking just the simulation point set for animation
can make hard to imagine the body behaviour, so a
larger set of animation points is needed for good visu-
alisation.

6 Example Models

The DLR FlexibleBodies library contains several ex-
amples that demonstrate the use of the provided capa-
bilities.
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6.1 Slider Crank Model

constSpeed

conrod

n={0,0,1}

RN

revolute1

n={0,0,1}

FH

revolute2

n={0,0,1}
actuatedRevolute

prismatic

n={1,0,0}
1 of
i

friction

slider

r={0.1,0,0}

Figure 10: Diagram layer of the slider crank model.

One of theses examples is a model of a slider
crank mechanism with two beam instances that repre-
sent the crank and the conrod. The crank rotates with
constant angular velocity.

Gravity forces are applied to all bodies of the sys-
tem and an additional Coulomb friction force acts on
the slider that has one translational degree of freedom.

The bending behaviour of the conrod is repre-
sented by one mode that is related to 1 Hz eigenfre-
quency, while the crank bending mode corresponds to
3.9 Hz eigenfrequency. The model aligns with an ex-
ample from literature and may therefore also be used
for verification purposes [9, Sec. 6.5.5].

Figure 10 depicts the graphical set-up of this
model in Modelica. The model 3D animation is shown
in Figure 11, where the menu option to show an addi-
tional exaggerated displacement field beside the exact
in-scale deformations is activated.

Fig. 12 shows the simulation results of this plane,
closed-loop mechanism with discontinuously applied
friction force. For the integration of the 10-s-scenario
0.671 CPU-s were spent with 10~ integration toler-
ance on a 1.6 GHz Intel Pentium Laptop with Win-
dowsXP.

Figure 11: Animation of the slider crank model. The
grey animations are scaled versions of the red anima-
tions and exaggerate the deformations of the beams.

4r 10.04

10.02

q -]

conrod: q [-] 1-0.02
- - —crank: q[-]

friction force [N] _0.04

slider position [m]

0 2 4 6 8 10
time [s]

Figure 12: Slider Crank simulation results.

6.2 Buckling of a beam

beam

small Excitation Euler_Buckling_Force

revolute revolute1

n={1,0,0}

X { [

prismatic

Figure 13: Set-up of the model Beam Buckling.

Considered is a bending beam with 18.8 Hz eigen-
frequency that is supported but not clamped on both
ends. At one end an external force is applied and is
increased linear in time until the classical Euler buck-
ling force (in this case: 16.6 kN ) is reached. This is
the scenario of the model Beam Buckling of Fig. 13.
It is supposed to document that the present approach
is capable to cover the bending behaviour of the beam
until buckling occurs, see Fig. 14. This requires to in-
clude stress stiffening terms in (6) that originate from
the second order displacement field description, here.

Consider the physical force vector f € R? that is
applied on the structure at the point ¢ ;. The equations
of the model Beam Buckling then get the form of (7)
whereas f, has to be defined using (4) and the Jaco-
bian J:

fo=Jf (12)
T
q @,
with J:= L(acf’l) —®,+ | 4P,
1 q’®,

cf
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Figure 14: Animation of the model Beam Buckling in
the instant the bifurcation occurs.

Consequently, an increasing force f may be ad-
ditionally amplified by the increasing deflection g, so
that the stability of the system may be affected. This is
in particular the case for axial loads on slender beams
as it is given in this model.

Since the deformation behaviour is not deter-
mined beyond the bifurcation point, an additional
small harmonic excitation torque with 1 Nm and 1 Hz
is applied at the other end at the beam. This is nec-
essary to ensure that the buckling actually occurs and
can be animated as it is done in Fig. 14.

The results of the simulation are shown in Fig.
15. At the beginning the harmonic excitation hardly
influences the state of the beam. With increasing
thrust force the bending behaviour is weakened until
the buckling occurs after about 10 s. These results
perfectly correspond to the theoretical prediction. The
nonlinear characteristics of the beam are reproduced
until buckling. However, it should be pointed out that
beyond this point the model is no more valid.

20

————— - thrust force [kN]

— — — - excitation torque [ Nm]
amplitude: q * 500 [-]

[(Nm]

[kN]

time [s]

Figure 15: Simulation results: Buckling of a beam.

6.3 Helicopter Rotor

FlapStop

blade

n={0,1,0}
FlapJoint

RotorBase

n=(0,0,1}
LagJoint

n={0,0,1}
RotorDrive

Figure 16: Set-up of the model Helicopter Rotor.

The model Helicopter Rotor in Fig. 16 mainly
consists of a theonom driven, cylindrical rotor base,
two joints and one blade. The rotor base rotates around
its cylinder axis that coincides with the global z-axis,
while the lag joint allows for a rotation around the lo-
cal z-axis at the outer radius of the rotor base. The flap
joint defines a angular motion around the local y-axis
at the circumference of the rotor base.

In its initial state the rotor base does not move
and the flap stop, a bump stop modelled as a nonlinear
spring, applies the torque to counterbalance the grav-
ity of the blade. A linear spring-damper element ac-
tuates according to the state of the lag joint. The 6 m
long blade is modelled as a flexible beam with 7 bend-
ing modes in its xz-plane and 2 bending modes in its
xy-plane so that a frequency range up to 270 Hz is cov-
ered.

Fig. 17 visualises the initial, static deformation
state of the blade which is dominated by the first xz-

Figure 17: 3D-View: Helicopter Rotor in its initial
state with red in-scale and grey exaggerated deflection.
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Figure 18: Time plot of joint variables of the model
Helicopter Rotor.

bending mode at 7.9 Hz. The design, the geometrical
and physical parameters of the model correspond to a
typical helicopter configuration of the 1960’s, see [7].

The result plot Fig. 18 shows the applied, smooth
rotor drive acceleration of the simulated start-up sce-
nario. The flap joint angle tends against zero with
increasing rotor rotation so that the blade moves to-
wards its vertical alignment. The instantaneous lag
joint angle is associated to the torque applied by the
linear spring-damper element witch transmits the drive
torque to the blade.

Fig. 19 presents the dominance of 7.9 Hz mode
at the initial static configuration. The plot of xy-plane
bending modes clearly correspond to the lag joint plot
which is again due to the torque applied by the lin-

0.05 ‘ — : : 5
4 N\
/ \
7.9 Hz / N
0.04F // A 14 —
\ L
—_— /

XL / \\ io_
= 0.03f ! v s 13 =
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time [s]
Figure 19: Plot of modal deformation amplitudes ¢(7)
for 2 bending modes in xy-plane (78 Hz, 252 Hz) and
3 bending modes in xz-plane (7.9 Hz, 26 Hz, 53 Hz).

ear spring-damper element. Generally, all modal am-
plitudes decrease with the increasing angular velocity
and clarify its stabilising influence. Note that the sta-
bilising effect again relies on the second order descrip-
tion (4). Neglecting these terms would lead to com-
pletely wrong results for this scenario.

6.4 Piston Rod
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Figure 20: ANSYS finite element model of a piston rod.

In order to demonstrate the use of DLR Flexible-
Bodies library with body data that originate from finite
element data, a simplified piston rod was modelled in
Ansys with 2.788 tetrahedral elements of type Solid95
[1] and 15.492 degrees of freedom, see Fig. 20.

The model was preprocessed in FEMBS and three
eigenmodes with 809 Hz, 1040 Hz and 1244 Hz eigen-
frequency were selected to represent the deformation
field of the piston rod on the multibody side. 97 of the

Figure 21: Modelica 3D-View of one cylinder com-
bustion engine with flexible piston rod.
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Figure 22: one-cylinder-combustion engine: simula-
tion results.

5164 finite element nodes were selected in FEMBS so
that the animation scheme has to map the motion of 97
simulation nodes on 5164 animation nodes.

Fig. 21 gives a 3D-View of a one cylinder com-
bustion engine where the flexible piston rod is assem-
bled. The dark-red, solid structure depicts the un-
scaled deformation state while the blue mesh exagger-
ate the deflections of the piston rod.

A start-up manoeuvre of this engine has been sim-
ulated applying a simplified gas force and no load. The
plot of the gas force and the increase of the angular
velocity of the crank shaft are given in Fig. 22. For
each of the eigenmodes the related modal amplitude
as function of time is plotted there as well.

7 Conclusion

This paper presents the new DLR FlexibleBodies li-
brary, that is based on the “Standard Input Data” (SID)
file format for flexible bodies. The library provides the
intrinsic capability to generate this data for beam-like
bodies. For more general bodies, this data has to be
supplied by an external tool on the basis of an available
finite element model. This preprocessing is performed
using the FEMBS-Software of the INTEC GmbH in
Wessling, Germany, that supports all major FE pro-
grams.

The animation of general flexible bodies is based
on new features provided in Dymola. Especially,
wavefront files are supported in Dymola and a sophis-
ticated algorithm is included to map the movement of
simulation to animation nodes.

Furthermore, the mechanical background and the
graphical user interface of the FlexibleBodies library

have been presented. In several application examples,
the usage of the model classes Beam and ModalBody
have been demonstrated.

As a final conclusion it may be stated that this li-
brary opens new chances for the set-up of multibody
models in Modelica since flexible components may
now be included and so that future application fields
are numerous.
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